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INTRODUCTION

Barium titanate (BaTiO3: BTO) is a ferroelectric material, 
which has been used as multilayer ceramic capacitors for long 
period (Tsurumi, 2007), and is a promising candidate for 
ferroelectric random access memory (Varghese et al., 2013). 
Because there has been a strong demand to downsize these 
devices in recent years, ferroelectric materials of smaller scale 
such as nanoparticles (NPs), has been intensively studied (Arlt 
et al., 1985; Frey & Payne, 1996; Imanaka et al., 2013; Mimura 
& Kato, 2014; Tsurumi et al., 2006; Varghese et al., 2013; 
Zhao et al., 2004). Although it is well known that dielectric 
and ferroelectric properties of BTO NP primarily depend 
on the particle sizes (Hoshina et al., 2008; Huan et al., 2014; 
Imanaka et al., 2013; Smith et al., 2008; Tsurumi et al., 2006; 
Varghese et al., 2013; Zhao et al., 2004), clear understanding 
for the size effect has not been obtained. This would be 
because the situation is complicated by several reasons such 
as; (i) different studies have reported different values for 
critical size at which ferroelectric phase becomes unstable 
at room temperature (Akdogan & Safari, 2007; Fong et al., 

2004; Ghosez & Rabe, 2000; Meyer & Vanderbilt, 2001; Smith 
et al., 2008; Spanier et al., 2006; Urban et al., 2003), (ii) the 
phase transition is sensitive to the material’s conditions such 
as strain (Choi et al., 2004), presence of defect (Frey & Payne, 
1996; Hoshina et al., 2006; Yamamoto et al., 2000), and surface 
charge (Spanier et al., 2006), (iii) crystal structure may not be 
uniform within a particle (Hoshina et al., 2008), and (iv) BTO 
NP samples were prepared by some different methods (Bansal 
et al., 2006; Imanaka et al., 2013; Urban et al., 2003; Varghese 
et al., 2013). 
Since dielectric and ferroelectric properties should be closely 
related with the crystal structure, crystal structure of BTO 
NP has been characterized by a variety of methods such as 
Rietveld analysis (Hoshina et al., 2008; Smith et al., 2008), pair 
distribution function analysis (Petkov et al., 2006; Smith et al., 
2008), X-ray absorption fine structure and X-ray absorption 
near-edge structure (Frenkel et al., 1999). For example, 
Smith et al. (2008) reported for BTO NP with the sizes of 
25 nm, 46 nm, and 70 nm that paraelectric-to-ferroelectric 
phase transition was observed for all the samples and the 
phase transition temperature is almost constant irrespective 
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of the particle size, which might be contradictory to the 
conventional picture that Curie temperature decreases as the 
particle size decreases (Hoshina et al., 2008; Huan et al., 2014; 
Imanaka et al., 2013; Smith et al., 2008; Tsurumi et al., 2006; 
Varghese et al., 2013; Zhao et al., 2004). On the other hand, 
Hoshina et al. (2008) reported that crystal structure varies 
within a particle. There is three-layer structure composed of 
surface (paraelectric), intermediate, and inner (ferroelectric) 
regions for bigger particle, while the whole particle becomes 
paraelectric for smaller particle. In analogy to the dielectric/
ferroelectric properties, these examples showed that clear 
understanding between the particle size and the crystal 
structure has not been obtained. This also implies that local 
structural characterization is required in addition to averaged 
crystal structure characterization. 
For the sake of local structural characterization, electron 
microscopy such as high-resolution transmission electron 
microscopy or scanning TEM (STEM) is a powerful method, 
since atomic arrangement can directly be observed. In 
particular, precision in the atomic position determination has 
been improved to picometer level in recent years (Borisevich 
et al., 2012; Jia et al., 2008; Polking et al., 2012; Yadav et al., 
2016; Yankovich et al., 2014). Such structural characterization 
has been reported for example by Polking et al. (2012) 
with high-resolution TEM and electron holography and 
by Li et al. (2014) with high-resolution TEM under in-situ 
heating. Polking et al. (2012) has visualized the polarization 
distribution within NP and reported that BTO NP with 
the size below 10 nm exhibited ferroelectricity at room 
temperature. On the other hand, Li et al. (2014) has reported 
that BTO NPs with the sizes ranging from 2.5 nm to 10 nm 
composed of multiple phases and the increment of Curie 
temperature up to 600°C. Even though these studies have 
demonstrated structural distribution in NPs, structure of NP 
with the size larger than 20 nm may be needed since such 
larger NP was not investigated in the previous studies (Li et 
al., 2014; Polking et al., 2012). Also, both of the studies have 
suggested that ferroelectric order or crystal phase is affected 
by the surface. However, the detailed reconstructed structure 
at the surface has not been clarified. Therefore, in the present 
study, we report a structural investigation near surface in 
a BTO NP studied by STEM observation. In particular, 
displacement of Ba ion near surface was quantitatively 
analyzed. Commercially available BTO NP with nominal size 
of 50 nm was studied as a specimen. 

MATERIALS AND METHODS

Commercially available BTO NPs (model no. 745952; 
Sigma-Aldrich, USA; purity: 99.9%, nominal particle 
size: 50 nm) were investigated in the present study. For 
comparison, commercially available SrTiO3 single crystals 

(Shinkosha, Japan) were also studied. BTO NP powder was 
homogeneously dispersed in ethanol using ultrasonic cleaner. 
Subsequently, a small amount of the solution was dropped 
onto a commercially available TEM grid (NS-C15; Okenshoji, 
Japan) and the grid was dried in air. On the other hand, a 
STEM thin foil of the SrTiO3 single crystal was prepared 
using an FB-2100 focused-ion-beam system (Hitachi High-
Technologies, Japan) with the beam energy of 40 keV. Final 
milling was conducted to remove the damaged layer from 
the surface by argon-ion-beam milling system (PIPS; Gatan, 
USA). 
STEM observation was carried out using a JEM-ARM200F 
(JEOL, Japan) equipped with a spherical aberration corrector 
for the electron probe (Rose, 1994). The observation was 
carried out under an acceleration voltage of 200 kV. TEM 
images were acquired with an Orius 200D charge coupled 
device camera (Gatan). Annular dark-field (ADF) STEM 
images containing 512×512 pixels were recorded with a 
detection angle range of 90 and 370 mrad and with a pixel 
dwell time of 2 μs. Approximately twenty images were 
acquired from a single region of interest, and the image series 
was processed using a non-rigid registration method (Jones 
et al., 2015) (SmartAlign; HREM Research, Japan) to improve 
the signal-to-noise ratio. This procedure is useful to reduce 
the influence of image distortion (Jones et al., 2015). The 
positions of Ba and Ti ions in the image were identified by the 
peak fitting method. The peak fitting was carried out using 
the two-dimensional Gaussian function in equation (1), as 
was done in a previous study (Yankovich et al., 2014), 
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	 (1)

where Z and Z0 are the total and background intensity, 
respectively, A is the peak intensity, xc and yc are the peak 
positions in the x and y directions, respectively, wx and wy are 
the width of the Gaussian function in the x and y directions, 
respectively, and c is a fitting parameter. Differences between 
the intensities of the experimental image and the Gaussian 
function (Z) were minimized by the least-squares method 
by optimizing the parameters of Z, Z0, A, xc, yc, wx, wy, and c. 
The optimization was performed by the Marquart method 
(Marquardt, 1963) using a script coded using Visual Basic 
6 (Microsoft, USA). It should be noticed here that analysis 
of atomic-column position was conducted both for Ba and 
Ti ions. However, it was found that the analysis became less 
accurate in the case of Ti columns near surface for some 
images, which might be partly due to lower image contrast of 
Ti column near the surface. Therefore, for clear justification 
of the conclusion, the present study focuses on the analysis of 
Ba column positions. 
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RESULTS AND DISCUSSION 

In prior to the observation of BTO NP, STEM observation 
of SrTiO3 single crystals was carried out to calibrate the non-
squareness of the scan pixel (Yankovich et al., 2014). Fig. 1A 
shows the ADF STEM image used for the evaluation. Because 
the contrast of the ADF STEM image is dependent on the 
atomic number of constituent ions in the atomic column 
(Pennycook & Jesson, 1990), the brightest spot and second 
brightest spot indicate Sr and Ti ions, respectively, whereas the 
O ion is not visible. Interatomic spacing between neighboring 

Sr ions along the [100] or [010] directions, dSr[100], dSr[010], 
(Fig. 1B) was investigated using peak fitting results, which is 
similar to the process used by Bals et al. (2006). Because it was 
found that the left-hand side of the image was considerably 
distorted, these regions were intentionally excluded from the 
analysis hereafter. As SrTiO3 has a cubic crystal structure with 
a lattice constant (a) of 390.5 pm (Mitchell et al., 2000) the 
ratio between dSr[100] and dSr[010] (dSr[100]/dSr[010]) should ideally be 
1.000. On the other hand, it was found in our measurement 
that the average dSr[100] and dSr[010] was 17.45 pixels and 17.19 
pixels long, resulting in dSr[100]/dSr[010] of approximately 1.015. 
Hereafter, the results were calibrated with this ratio. As a result 
of calibration, the average dSr[100] was determined as 390.5 pm 
with the standard deviation (SD) of 5.8 pm and the average 
dSr[010] was determined as 390.5 pm with the SD of 5.2 pm. 
Fig. 2A shows a representative TEM image of the BTO NP 
studied. The particle size was approximately 50 nm, having 
{10x} and {11x} habit planes on the edge and rounded corners 
at the atomic scale. It is considered from the image contrast 
that the particle was composed of multiple domains (Fig. 2B). 
Presence of multiple domains was also supported by the result 
that the diffraction spot measured from this particle (Fig. 
2C) exhibited splitting (Fig. 2D). A typical ADF STEM image 
is shown in Fig. 2E, which was taken from the region (I) in 
Fig. 2B. Image contrast is higher in the grain interior (left top 
side) and lower near and at the surface (right bottom side), 
which suggests that the particle is thicker in the grain interior 
and thinner near and at the surface. For simplicity, the thicker 
grain-interior region, several unit cells from the surface, and 

Fig. 1. (A) Annular dark-field scanning transmission electron microscopy 
image of SrTiO3 single crystal. [100] and [010] direction of STO crystal 
is shown at the right-bottom. (B) Schematic to explain the definition of 
dSr[100], and dSr[010], where Sr ion and Ti ion was indicated by gray and black 
circle. 
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the outermost layer of the surface will be called the “grain 
interior”, “near surface”, and “outermost surface” hereafter, as 
schematically shown in Fig. 2F. 
ADF STEM images (Fig. 2E and Fig. 3) taken from different 
regions (I~V) as shown in Fig. 2B were analyzed to measure 
the Ba ion position quantitatively. In particular, Ba ion 
displacement from the regular lattice position was determined 
for the near surface and the outermost surface regions (Fig. 
3), wherein the reference regular lattice in the near surface 
and the outermost surface regions was obtained by extending 
the reference lattice in the grain interior region toward the 
surface. It was found that some Ba ions were displaced by 
larger than 20 pm near the surface, although the trends were 
different for different regions. Ba ions were displaced toward 
the right-bottom side (outward) in the top half, whereas the 
displacement in the bottom half was smaller in the region 
(I) (Fig. 4A). Ba ions were mostly displaced rightward in the 
outermost surface region in the region (II) (Fig. 4B), while 
the displacement was smaller and irregular in the region 
(III) (Fig. 4C). On the other hand, Ba ions in the outermost 
surface region were mostly displaced rightward (inward) in 

the region (IV) (Fig. 4D), which was a different trend from 
the other cases. Finally, in the region (V) (Fig. 4E), Ba ions 
were displaced upward (outward) in the right half of the 
outermost surface region, while some ions in the left half 
of the outermost surface region were displaced leftward 
nearly along the surface. Thus, some Ba ions were greatly 
displaced in non-uniform directions. In particular, outward 
displacement as observed for many Ba ions in Fig. 4A and B 
possibly leads to expansion of unit cell near surface, and the 
influence of the surface would be greater for smaller particle. 
This may explain by a trend reported by Smith et al. (2008) 
that unit cell volume increased as the particle size decreased, 
which was obtained from Rietveld and pair distribution 
function analysis for the X-ray diffraction measurement. It 
was also suggested that coherence between the neighboring 
unit cells was reduced for the smaller NP. Such a reduction of 
coherence may be induced by Ba-ion displacement toward 
non-uniform direction (Smith et al., 2008). 
In summary, the atomic-scale STEM observation was carried 
out for near-surface region in a BTO NP with nominal size 
of 50 nm. Ba-ion position observed in the STEM images was 

5 nm
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A B

C D
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Fig. 3. (A-D) Atomic scale annular dark-
field scanning transmission electron 
microscopy image taken from the region 
(II)~(V). 
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quantitatively analyzed. It was found that some Ba ions at 
the outermost surface were greatly displaced in non-uniform 
directions. 
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