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INTRODUCTION

The crystallization behavior of FeSiB-based soft magnetic 
alloys was extensively investigated over the last decade. 
Yoshizawa et al. (1988) reported that soft magnetic properties 
were observed with the optimum heat-treatment condition of 
550°C for 1 hour in the 1 at% Cu and 3 at% Nb added Fe-Si-B 
alloy, which is known as FINEMET (Hono et al., 1991, 1992). 
The microstructure of FIMENET consists of ultrafine grains 
of bcc phase with a few nanometers in diameter, which is 
believed to contribute to the excellent soft magnetic properties 
(Yoshizawa & Yamauchi, 1990). It was known that the 
magnetic behavior of these materials was strongly influenced 
by the formation of crystalline phases and its microstructure. 
In order to correlate the microstructural transition and 
the magnetic properties, the early stage behavior of the 
primary crystallization has been studied over the years, using 
techniques that include atom probe field ion microscopy, 
high-resolution electron microscopy (Yoshizawa & Yamauchi, 
1991), extended X-ray absorption fine structure analysis 
(Ayers et al., 1998). In order to refine the microstructure, 

niobium was added and the effect on the microstructural 
refinement has also been studied (Lecaude & Perron, 1997). 
Crystallization behavior at high temperature, called as the 
2nd crystallization, can be a critical factor on the magnetic 
properties because of the high driving force at elevated 
temperature delivering large crystallites. In this paper, we 
investigated and report the microstructural transition and the 
physical properties of amorphous Fe73.28Si13.43B8.72Cu0.94Nb3.63 
alloy was investigated using transmission electron microscopy 
(TEM) and coercive force measurement, with heat treatments 
to achieve maximum performance of magnetic properties.

MATERIALS AND METHODS

The specimen had basic composition of 13.43% Si, 8.72% B, 
0.94% Cu, and 3.63% Nb, with balanced Fe in atomic%. 
Molten alloy was atomized to make amorphous powders 
of 75~100 μm in diameter in vacuum of 10–2 Pascal. The 
atomized alloy specimens were annealed at 530°C, 600°C, 
and 670°C for 1 hour under 1 Pascal pressure. Coercive force 
was measured from each sample after each heat-treatment 
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temperature.
Crystalline behavior and phase analysis of the alloys were 
carried out using differential thermal analysis (DTA) and 
X-ray diffraction (XRD) using CuKα radiation. Scanning 
transmission electron microscopy (STEM), operated at 200 
kV, was used to analyze the morphological changes, structural 
and chemical information of the alloys. Electron energy loss 
spectroscopy and energy dispersive spectroscopy in STEM 
were adopted to obtain 2-dimensional distribution of the 
light and heavy elements in amorphous and crystalline region 
of the alloys, respectively. Cross-sectional TEM specimens 
were prepared using focused ion beam. 

RESULTS AND DISCUSSION

Fig. 1 shows the crystalline characteristic of the amorphous 
Fe73.28Si13.43B8.72Cu0.94Nb3.63 alloy with heat-treatment 
temperatures obtained from DTA at a heating rate of 20°C/

min. The thermogram revealed two distinct exothermic peaks, 
which meant that the amorphous alloy went through two 
crystallization steps, at 543°C and 675°C. Fig. 2 shows XRD 
spectrum obtained from as-atomized, annealed at 530°C, 
600°C, and 670°C. First crystalline phases of the exothermic 
peak in the DTA was from the formation of BCC Fe, which 
was clearly identified from the XRD peak in Fig. 2(b) and 
2(c). The second phases appeared in DTA curve were from the 
formation of FeB, Fe2B, and FeNb intermetallic compound 
as identified in Fig. 2(d). As crystallization proceeds, the peak 
position of bcc Fe phases shifted due to the formation of Fe-
based compounds as will be discussed in the later section.
Fig. 3 shows changes of the coercive force (HC) with heat 
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Fig. 1. Differential thermal analysis thermograms of the Fe73.28Si13.43 

B8.72Cu0.94Nb3.63 alloy at heating rate of 20°C/min.
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Fig. 2. X-ray diffraction patterns of the as-atomized phases (a), annealed 
for 1 hour at 530°C (b), annealed for 1 hour at 600°C (c), and annealed for 
1 hour at 670°C (d) of the Fe73.28Si13.43B8.72Cu0.94Nb3.63 alloy.
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Fig. 3. Coercive force (HC) as a function of heat-treatment temperature for 
the Fe73.28Si13.43B8.72Cu0.94Nb3.63 alloy.

Fig. 4. Transmission electron microscopy photographs and energy 
dispersive spectroscopy spectrum of as-atomized Fe73.28Si13.43B8.72Cu0.94Nb3.63 
alloy. Halo ring patatern, chracteristic diffraction pattern from amorphous 
phase, is observed and shown in the inset.
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treatments. As the treatment temperature increased, HC 
was reduced to 0.082 Oe at 575°C, close to the first peak 
temperature of DTA curve, 570°C, which reveal the start 
temperature of crystallization, ~535°C. After the minimum 
HC point, a rapid increase of Hc was observed with the 
heat-treatment temperature above 600°C. Microstructural 
investigations were carried out to correlate the microstructure 
and the soft magnetic properties to identify the major 
microstructure for the enhancement of magnetic properties. 
Fig. 4 shows the microstructure of the as-atomized with the 
selected area diffraction patterns (SADP) in the inset. No 
distinct feature or segregation of the alloying elements (Si, 
B, Nb, Cu) was observed in the powder as can be seen. SAD 
shows faint, diffuse higher order index rings, which might be 
due to the crystal size effect broadening peaks in SAD and 
XRD. 
The sample was heat-treated at close to the first crystallization 
temperature in DSC curve, at 576°C, and the microstructure 
and SADP are shown in Fig. 5. Fine crystalline grains of 
about 10~20 nm in diameter were formed throughout the 
powder, which was believed to play a major role in achieving 
the excellent soft magnetic properties. Nanocrystalline BCC 
phase, embedded in the amorphous phases, were identified 
as Fe crystals from XRD, SADP and nano-beam diffraction 

method. These nano-scale Fe phases might influence 
magnetic properties, such as magetrostriction, coercive force, 
and magnetic anisotropy, as reported earlier (Yoshizawa et al., 
1988).
As the heat-treatment temperature is further increased, 
the number of the bcc Fe crystals increased and copper 
crystalline grains started to appear. Fig. 6 shows the brightfield 
image and the elemental mapping of the microstructure 
which reveals distribution of copper-rich crystals in 
Fe73.28Si13.43B8.72Cu0.94Nb3.63 alloys annealed at 600°C. No 
clustering of other elements, like niobium, was observed. 
Niobium was known to have limited insolubility in iron 
matrix, which suppresses the growth of pre-formed nuclei. 
Formation of Cu-rich crystallites at 600°C heat-treatment 
provided an increased number density of nucleation sites for 
the bcc crystalline phase, with the additional effect of Nb in 
the amorphous matrix. Combined effect of Cu-rich phase 
and Nb, equivalent to the enhancement of nucleation sites 
and suppression of the nuclei growth, respectively, results in 
the formation of the ultrafine grain structures. These ultrafine 
grains give relatively low coercive force, eventually leading to 
good soft magnetic properties (Herzer, 1989, 1990, 1995). 
At 670°C grain growth occurred leading to coarser grains 
as shown in Fig. 7. Number density of copper-rich grains 
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Fig. 5. Microstructure and nano-beam 
diffraction of the alloy heat treated at 
576°C.
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noticeable decreased and it is clearly visible that the B-rich 
and N-rich phase got separated. It clearly reveals that the 
separation of B-rich, Si-rich, and Si-rich phases. B-rich and 
Si-rich phase formed compensating structure each other 
while niobium showed intermixing with silicon but not with 
boron. Degradation of soft magnetic properties was observed 
above 600°C of heat treatment, which commonly reveals the 
reduction of copper-rich phase and the grain growth. It is 
believed that the grain growth and the elemental localization 
were the main causes of the increase in coercive force. 

CONCLUSIONS

Microstructural evolution and the magnetic properties were 
correlated in the rapidly solidified Fe73.28Si13.43B8.72Cu0.94Nb3.63 
alloy with different heat treatment temperatures. Fig. 8 
shows the schematic view of the microstructural evolution. 
In the as-atomized stage, the alloy is a structurally and 
chemically homogenous amorphous phase. At the optimum 
stage of magnetic properties, which was obtained by heat 
treatment at ~580°C, Cu rich clusters were formed with a few 
nanometer in diameter, which contribute to the maximum 
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Fig. 6. Transmission electron microscopy 
photographs of Fe73.28Si13.43B8.72Cu0.94Nb3.63 
alloy annealed for 1 hour at 600°C.
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Fig. 7. Transmission electron microscopy 
photographs of Fe73.28Si13.43B8.72Cu0.94Nb3.63 
alloy annealed for 1 hour at 670°C.
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performance of magnetic properties. At temperature above 
675°C, phase separation of B-rich, Nb-rich, and Si rich phases 
were observed and the number density of copper-rich phase 
reduced significantly. 
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