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INTRODUCTION TO ATOM PROBE 
TOMOGRAPHY

Atom probe tomography (APT) stems from the field-ion 
microscope (Müller, 1956) equipped with a time-of-flight 
mass spectrometer developed by Erwin Müller and his co-
workers in 1967 to 1968 (Müller et al., 1968). The technique 
is henceforth about to celebrate its 50th anniversary. Field 
ion microscopy makes use of an intense electric field, in the 
rage of 1010 Vm-1, to ionize rare gas atoms in the vicinity of 
the specimen surface. The specimen is shaped as a sharp 
needle, with a radius of curvature R in the range of 30 to 
200 nm, which enables the generation of electric fields of 
the appropriate magnitude by biasing the specimen to a few 
kilovolts (the field is proportional to V/R). The specimen is 
maintained at low temperature (20~80 K) to prevent surface 
migration and improve the control over the field evaporation 
process, and the analysis takes place in ultra-high vacuum 
conditions (≈10-8 Pa), prior to the introduction of the imaging 
gas (≈10-3 Pa). The beams of ions generated near the surface 
are projected, under the effect of the very intense electric field, 
onto a screen and the image formed reveals the topography 
of the specimen surface down to the atomic-level (Müller 

& Bahadur, 1956), allowing to image lattice defects (Beavan 
et al., 1971; Dagan et al., 2015; Wilde et al., 2000) as well as 
secondary phases (Faulkner & Ralph, 1972). 
In atom probe experiments, no imaging gas is used, and it is the 
atoms from the specimen itself that are successively removed 
in the form of ions. The prevalent theory of field evaporation 
from metal surfaces involves atoms escaping while their 
charge is progressively drained back into the surface (Forbes, 
1995), and as the singly-charged ion is accelerated away from 
the surface, it can undergo one or more successive electric-
field-induced ionization (Kingham, 1982). In order to achieve 
time-control of the field evaporation process, high-voltage 
(Müller et al., 1968) or laser pulses (Bunton et al., 2007; Gault 
et al., 2006; Kellogg & Tsong, 1980) are superimposed to a 
direct current high voltage (VDC) field, as depicted in Fig. 
1, to trigger the departure of the ions. This, in turns, allows 
for elemental identification of each evaporated ion by time-
of-flight mass spectrometry. The emission of the ions takes 
place during the pulse, and in the case of the voltage-pulsed 
instrument, and although the pulse is in the nanosecond time 
range, ions are emitted with a range of energies, that cause 
a spread of the times-of-flight for ions of a single element, 
which limit the mass resolving power of the technique.  
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The specimen is progressively destroyed, almost atom-by-
atom, and the atom probe microscope collects the time-
of-flight and impact position of each ion. Processing of the 
data translates the time-of-flight into a mass-to-charge ratio, 
and the position is used to build a tomographic, atomically 
resolved image of the evaporated volume (Bas et al., 1995; 
Larson et al., 2013), represented as a point-cloud where every 
point is an atom that has been elementally identified and 
repositioned with a high degree of precision (Gault et al., 
2010b). 

INSTRUMENTAL DESIGN

Early designs of the technique, usually referred to as atom-
probe field ion microscopes or one-dimensional (1D) 
atom probe (Miller, 2000; Müller et al., 1968), had a very 
narrow field-of-view and really only provided linear 
compositional measurement in the depth of the sample, 
within a region of interest located by field-ion microscopy 
(Brenner & Goodman, 1971). APT was truly enabled by the 
implementation of position-sensitive, time-resolved particle 
detectors by Cerezo et al. (1988) followed by Blavette et al. 
(1993), and modern microscopes are equipped with delay-
line detectors (Da Costa et al., 2005; Jagutzki et al., 2002). The 
incorporation of micro-channel plates (MCPs) in the design 
of such detectors, to convert the impact of a single-ion into 
a cascade of up to millions of electrons, limits the efficiency 
approximately to the open area of the MCPs, so between 
50%~80%. The MCPs are operated in saturated mode, which 
ensures almost no mass or atomic number sensitivity for 
ions in the range of 2~3 kV up to 15~20 kV up to several 
hundreds of Da, and the loss of ions is therefore non-
specific and assumed to be random and hence not affecting 
the technique’s capacity to precisely measure the elemental 
composition. In order to increase the mass resolution of the 

technique, limited by the energy spread of the emitted ions, 
reflectron-lenses were fitted onto atom probes (Bémont et al., 
2003; Cerezo et al., 1998; Panayi, 2006). A reflectron acts as an 
electrostatic mirror: ions penetrate inside a region containing 
a well-defined electric field in which ions are progressively 
slowed down until they are returned almost 180o. An ion 
entering the reflectron with more energy travels inside the 
reflectron farther than an ion with less energy, which results 
in ions with different kinetic energies having the same time-
of-flight when they are collected by the detector, which in 
turns increases dramatically the mass resolving power of the 
technique (Clifton et al., 2008).
State-of-the-art instruments are based on the design by Kelly 
et al. (2004), that stems from preliminary work by Nishikawa 
et al. (2000) to implement a micro-electrode placed near the 
specimen in order to locally enhance the electric field in a very 
confined region thereby allowing to individually address one 
of several specimens mounted on the same sample-holder, 
as well as reducing the voltage necessary to reach the critical 
field at which surface atoms get emitted, allowing for voltage 
pulsing with higher repetition rates to be used. The timing 
accuracy reached by modern electronics has enabled to lower 
the flight path, thereby increasing significantly the angular 
field-of-view of the technique (Deconihout et al., 2007; Kelly 
et al., 2004). This commercial microscope design, with much 
higher ease of use, has enabled significantly higher yield and 
higher throughput, has been one of the critical aspects to the 
recent breakthrough of the technique. 
The other two critical aspects have been progress in 
the preparation of specimens using focused-ion beam 
techniques and the implementation of the laser-pulsing 
capabilities. Historically, specimens for APT were prepared 
by electrochemical polishing wires or thin match-stick 
pieces of the material of interest (Melmed, 1991), a method 
mostly only amenable to electroconductive materials. The 
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Fig. 1. Schematic view of an atom probe 
microscope, with the specimen subjected 
to a high voltage (HV) and illuminated by 
laser pulses of HV pulses, triggering the 
field evaporation of ions that fly through 
a counter-electrode and are collected by 
the position-sensitive detector, which 
also records their time-of-flight allowing 
for their elemental identification. VDC, 
direct current high voltage; T, tem
perature.
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preparation of specimens from semiconductors and oxides 
via a chemical polishing route was complex and not as reliable 
(Melmed et al., 1981; Nakamura & Kuroda, 1978). Alternative 
routes using broad- or focused-ion beam milling to prepare 
sharp, needled-shaped specimens were investigated with 
some success (Larson et al., 1998; Walls et al., 1974; Waugh 
et al., 1984). The past decades have seen a rapid spread of 
scanning electron microscopes incorporating a focused-ion 
beam as a second source, often equipped with a gas-injection 
system that allows for localized chemical-vapor deposition 
of various metals (Pt, W) assisted by the secondary electrons 
emitted by the surface upon illumination by the electron- 
or ion-beam, as well as a micromanipulator that consists in 
a needle that can be precisely moved inside the microscope 
chamber. Combining these different elements enables to lift-
out a small piece of the material, usually containing a specific 
region of interest, that can then be mounted onto a support 
grid or array of pre-sharpened posts, and finally shaped into 
one or several APT specimens (Felfer et al., 2012; Miller & 
Russell, 2006; Thompson et al., 2007). FIB-based specimen 
preparation therefore allows to select the region that is then 
to be analyzed, instead of blindly hoping to find it inside 
the specimen, and with an enhanced field-of-view, it is then 
possible to perform targeted APT analysis of a specific feature 
(e.g., phase, grain boundary, interface).
In parallel, from the early 2000s, a strong effort started to 
revive the pulsed-laser atom probe. Early implementation 
of such instruments made use of nanosecond laser sources 
(Kellogg & Tsong, 1980; Tsong et al., 1982), and, mostly due 
to the very strong heating of the specimen under illumination 
(Kellogg, 1981), were not considered not reliable enough 
for atom probe microanalysis, and were therefore confined 
to studying fundamental aspects of high-field nanoscience 
(Kellogg, 1982; Tsong & Kinkus, 1984). The availability 
of commercial, reliable laser sources delivering pulses in 
the picosecond and sub-picosecond range renewed the 

interest in the pulsed-laser atom probe, and from 2003 
Imago Scientific Instruments (Bunton et al., 2007), shortly 
followed by academic groups (Cerezo et al., 2007a; Gault et 
al., 2006), pushed the development of a new generation of 
instruments, partly driven by the hope of exploiting non-
thermal emission (Stoian et al., 2000). After much debate 
within the community on the active mechanism that leads to 
the emission of ions (Gault et al., 2005, 2007; Vella et al., 2006, 
2007), it seems that for metals the field evaporation is caused 
by a fast increase and quenching of the temperature of the 
specimen’s surface subsequent to absorption of photons from 
the laser pulse (Vurpillot et al., 2009). This thermal pulse is 
usually short enough that the mass resolution is improved 
or at least equivalent to voltage-pulsed APT, and, although a  
degradation of the spatial resolution could be noticed under 
certain conditions (Gault et al., 2010c, 2011a; Vurpillot et 
al., 2009), the performance of pulsed-laser APT are usually 
satisfactory. It must be stressed that much of the physics of the 
field evaporation of semiconductors and insulators remains 
poorly understood and is still a matter of intense discussion 
in the community (Gilbert et al., 2007; Karahka et al., 2015; 
Kelly et al., 2014; Silaeva et al., 2013, 2014), and molecular 
ions are often detected and their influence on the analytical 
capabilities of the technique is rather difficult to measure 
precisely (Gault et al., 2016; Müller et al., 2011a, 2011b). 

DATA TREATMENT AND RECONSTRUCTION

APT data can be separated into raw data, the direct output 
from the microscope, and a point cloud where every ion 
has been identified and allocated a position in the three-
dimensional (3D) reconstruction. For each ion, the time-
of-flight and the corresponding two-dimensional position 
the impact are recorded, and the details of how the detector 
associates positions and time-of-flight are described in ref. 
(Da Costa et al., 2005; Jagutzki et al., 2002). The time-of-
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Fig. 2. Point cloud showing the ele
mental distribution in the analysis 
of a nanocrystalline Al-alloy where 
segregation of solutes to the grain 
boundaries is readily visible (for more 
details on the materials & analysis, 
please refer to Sha et al. [2011]), with 
a close up on a single precipitate and 
different families of atomic planes. Two 
projections of the same volume where 
individual grains are highlighted by 
isodensity surfaces are also displayed, 
a n d  c o l o u re d  a c c o rd i n g  t o  t h e i r 
orientation relative to the z-axis of the 
tomogram.
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flight is converted into a mass-to-charge ratio (Müller et 
al., 1968) usually displayed in the form of a histogram, the 
mass spectrum, that is optimized using methods outlined by 
Sebastian et al. (2001). The impact position is used, assuming 
a simple projection law, to build a 3D point cloud of the 
analyzed volume of material (Bas et al., 1995; Gault et al., 
2011b; Larson et al., 2013), as illustrated in the case of an Al-
alloy in Fig. 2 (Sha et al., 2011). The current reconstruction 
has severe drawbacks that have been discussed at length in 
recent review articles (Larson et al., 2013; Vurpillot et al., 
2013), but they mostly relate to the complex shape of the 
specimen surface during the field evaporation process that is 
not accounted for by the current method (Gault et al., 2010a; 
Rolland et al., 2015). 
After the point cloud has been generated, a wide variety of 
methods can be used to extract or to visualize features from 
within the point cloud, as well as quantify the local elemental 
composition, as summarised in Fig. 3 (Gault et al., 2013).
The point cloud can be directly interrogated. By applying 
a threshold on the distance between pairs of atoms of one 
or more specific element, it becomes possible to extract 
individual atomic clusters present within the data and 
perform quantitative analysis, as illustrated in Fig. 3B. The 
various flavours of cluster-finding methods were thoroughly 
reviewed in reference (Marquis & Hyde, 2010). At the 
moment, most of those methods suffer from a lack of 
consistency in the definition and usage of the parameters used 

to define the clusters (Marceau et al., 2011). Other approaches 
involve dividing the point cloud into a number of blocks and 
then count atoms of each element and compare to a random 
distribution to assess possible clustering tendencies in the 
distribution of solutes (Moody et al., 2007, 2008). Another 
example the point-to-point distances can be computed, 
thereby allowing to access i.e. the distance between an atom 
and its successive shells of nearest-neighbouring (Fig. 3C) 
atoms which can be similarly used to investigate clustering 
between atoms of the same or other elemental nature 
(Shariq et al., 2006; Stephenson et al., 2007, 2013). From this 
distribution of distances, radial or pair distribution functions 
(De Geuser et al., 2006; Haley et al., 2009; Marquis, 2002) 
can also be derived, which also enable to reveal clustering 
tendencies. 
Other commonly used are approaches to interrogate the 
point cloud to derive the local concentration, or its evolution, 
within a specific region of interest using composition 
profiles or ladder diagrams. In addition, isoconcentration or 
isodensity surfaces can be generated based on a voxelisation 
of the tomogram (Sha et al., 2011), and then generating a 
surface that encompasses areas of the data containing more 
than a specified threshold composition or density of one 
or more species. This is a useful tool to highlight regions of 
different composition. An example of such surfaces is also 
shown in Fig. 3A. Quantitative analysis based on isosurfaces 
can also be achieved via the so-called proximity histogram 
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Fig. 3. Dataset of an oxidised Nickel-
based alloy (corroded in hydrogenated 
steam at 480oC) (Gault et al., 2013). 
(A) Point-cloud and isoconcentration 
surfaces highlighting the internal 
oxidation process coming from the 
surface as well as small oxide islands in 
the bulk of the sample. (B) Individual 
cluster isolated from within the data 
using a cluster-identification method, 
highlighted with the yellow cube in (A). 
(C) First nearest-neighbour distribution 
for Cr showing a slight clustering 
tendency. (D) Composition profile in 
the form of a proximity histogram from 
the isoconcentration surface within the 
yellow cube in (A).
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analysis (Hellman et al., 2000), which calculates a profile 
of concentration along the local normal to the surface, and 
integrates over the entire surface, and an example of such 
a proxigram is shown in Fig. 3D. Some issues with this 
approach were highlighted in a recent article (Marceau et al., 
2011).
Finally, some methods have been developed to interrogate 
the structural integrity of the point cloud. Fourier transforms 
(Vurpillot et al., 2001, 2004) for instance, or real-space 
alternative such as the so-called ‘atom vicinity’ method (Boll 
et al., 2007) or spatial distribution maps (Geiser et al., 2007; 
Moody et al., 2009), which are a more or less a different 
representation of a split 3D radial distribution function, 
or the Hough transform (Yao et al., 2011) and related 
techniques (Araullo-Peters et al., 2015). Three main uses 
of these methods have so far been reported: help calibrate 
reconstructions (Gault et al., 2009b; Suram & Rajan, 2013), 
assess the true spatial resolution of the technique (Cadel et al., 
2009; Gault et al., 2009a, 2011a; Kelly et al., 2009), and finally, 
offer a route to rectify the data to compensate for the limited 
spatial resolution and reposition the atoms onto a crystalline 
lattice (Breen et al., 2014, 2015; Moody et al., 2011), thereby 
allowing for direct coupling with atomistic simulations 
(Moody et al., 2014).

THE RISE OF APT

APT is burgeoning, especially in comparison to some more 
traditional materials characterization techniques such as 
electron microscopy, but its rise is irresistible. When it 
comes to examining the evolution of a field, an in-depth 
bibliographical analysis can sometimes be very revealing. 
The graph in Fig. 4 shows the number of articles dealing 
with atom probe over the past five decades, with a ten-fold 
increase in the number of articles published yearly from 1965 

to 2015. Although there is a significant increase in the overall 
scientific output worldwide, the growth of the number of 
articles involving results from APT over 2010~2016 has been 
increasing at three-time the pace of the field of materials 
science (as indexed by Scopus). This can partly be attributed 
to the availability of reliable commercial instrument 
becoming available widely around 2004~2005, which has 
enabled the technique to spread beyond a community of 
specialists gathering every two years now at the symposium 
of the International Field Emission Society (now called Atom 
Probe Tomography & Microscopy, recently held in Gyeongju, 
Korea). 
In addition, based on tools made available by the Centre for 
Science and Technology Studies (CWTS) from the University 
of Leiden (http://www.vosviewer.com/), it is possibly to look 
at a more detailed evolution of the scientific literature: for 
instance Fig. 5 shows a maps of the keywords extracted from 
the titles of over 4,000 articles published over 1966~2016, 
where the size of a disc is proportional to the number of times 
a given word has been found, the proximity between words 
reflects how often they are found together, and their color 
reflects topical clusters that form co-appearance (Fig. 5A) and 
the average year where this term has most often been found 
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(Fig. 5B), with blue being prior to 1980 and later than 2010. 
Combining these maps informs on how areas of research 
within the community have evolved with time, for instance 
studies of the more fundamental aspects of the technique in 
green in (Fig. 5A), appear in (Fig. 5B) to have been the focus 
of research earlier than some of the semiconductors-related 
studies (e.g., GaN, nanowires, dopant distribution), which 
were mostly enabled by the implementation of pulsed-laser 
sources on atom probe microscopes after 2004 (Bunton et al., 
2006; Cerezo et al., 2007a; Gault et al., 2006). It is clear from 
this type of diagrams that some materials have consistently 
been the core of APT analysis such as Ni-based superalloys or 
steels, in particular for nuclear applications, but also that the 
technique has evolved towards a broadening of the range of 
materials types that are analyzed by APT, including magnetic 
materials (Dempsey et al., 2013), semiconductors (Kelly et al., 
2007) and insulators (Gordon & Joester, 2011; Mazumder et 
al., 2011; Valley et al., 2014). 
A more precise map was plotted in Fig. 6, in which keywords 
were extracted from the titles as well as abstracts from articles 
published over 2010~2016. In this map, the color reflects the 
normalized average citations associated to these keywords. 
Here again, some obvious clusters of keywords form, with 
i.e. semiconductors and solar cells closer to the methods 
development, laser and field evaporation that are being 
intensely researched to have a better grasp on the fundamental 
mechanisms underpinning the field evaporation of poor-
conductors (Chen et al., 2011; Kelly et al., 2014; Silaeva et al., 
2014). Another interesting point that arises from analyzing 
such diagrams is how APT is now used to complement other 
techniques: terms related to differential scanning calorimetry, 
scanning & transmission electron microscopy, X-ray 
diffraction and small-angle scattering, as well as atomistic 
simulations, such as (kinetic) Monte Carlo, molecular 
dynamics or density functional theory, can all be found. This 

highlights how APT has progressively and increasingly been 
integrated into correlative approaches (De Geuser et al., 2014; 
Gault et al., 2012; Herbig et al., 2015; Krug et al., 2014; Larson 
et al., 2009; Mao et al., 2007), in order to best exploit its 
strengths.

SUMMARY AND CONCLUSIONS

To summarize, APT is a destructive analytical technique 
with unique capabilities to reveal the 3D arrangement and 
distribution of elements within a small volume of a solid 
material. The technique will turn 50 years old in 2017—
a special symposia at the Microscopy & Microanalysis 
conference in August 2017—and it has gone through a 
series of revolutions, from going 1D to 3D and then from 
being restricted to conductors to being capable of analyzing 
insulators and semiconductors. Admittedly, the technique 
has drawbacks (i.e., small sampled volume, limited sensitivity, 
etc.) and suffers from a range of artifacts (Blum et al., 2016; 
Gault et al., 2016; Larson et al., 2013), most of which are 
related to a combination of many complex physical processes 
that can take place concomitantly or successively over the 
course of an atom probe experiment. The community is now 
working to understand some of the key issues that limit the 
performance and applicability of the technique to increasingly 
complex materials (Kelly et al., 2014; Silaeva et al., 2013).
The field of application of APT has dramatically increased, 
building on a vast body of work on metallic materials and 
alloys. Recent articles have reviewed the impact APT onto 
physical metallurgy or metallic alloys (Cerezo et al., 2007b; 

Fig. 6. Mapping of keywords extracted from titles & abstracts of articles 
published over 2010~2016, colored based on their relative average 
citations; in red appear terms cited two or more times the average, in 
green around the average and in blue, below average.
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Fig. 7. Illustration of the multi-scale complexity of the microstructure of 
a ferritic/martensitic steel developed for power generation analysed by a 
range of microscopy and microanalysis techniques.
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Marquis et al., 2009a, 2009b, 2013; Seidman, 2007), as well 
as its capabilities for ceramics, semiconductor and devices 
characterization (Hono et al., 2011; Kelly et al., 2007; Larson 
et al., 2011a, 2011b), and I would like to refer readers to those 
seminal articles. Current studies are increasingly making 
use of a vast array of characterisation techniques, at mul
tiple scales, with the view to correlate information from i.e. 
electron microscopy, optical spectroscopy or small-angle 
scattering (De Geuser et al., 2014; Felfer et al., 2012; Herbig et 
al., 2015; Kuzmina et al., 2015; Rigutti et al., 2013), and this is 
illustrated in Fig. 7.
Amongst new areas that are being explored, one can mention 
the broad front of oxidation and corrosion, where there 
is a strong need to establish a mechanistic understanding 
of complex atomic-scale phenomena that lead to the 
deterioration of materials (Kim et al., 2015; La Fontaine et 
al., 2015; Marceau et al., 2013; Meisnar et al., 2015; Schreiber 
et al., 2013); on the front of natural or biomaterials where 
the link between the nanoscale structure and properties have 
not often been consistently explored (Gordon & Joester, 
2011; Karlsson et al., 2014; La Fontaine et al., 2016), and, very 
recently geological materials (Peterman et al., 2016; Valley et 
al., 2014) where the local composition can be related to the 

history and age of the material. 
The APT community has grown tremendously and will 
continue to do so, and the instrumental advances will help 
push more frontiers in materials science and technology.
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