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INTRODUCTION

The properties of materials could change considerably depending 
on dimensionality. A typical case such as graphite, it can be 
varied from zero-dimensional to three-dimensional materials. 
Graphene, two-dimensional (2D) material, a sheet form of 
graphite, is recently paid attention for their extraordinary 
physical properties and potential applications of graphene 
(Geim & Novoselov, 2007; Castro Neto et al., 2009; Geim, 
2009; Mas-Ballesté et al., 2011). The property of graphene 
is affected by their local structure such as impurity, defect, 
number of layers, stacking sequence etc., thus it is necessary to 
identify the quality of samples using several characterization 
tools (Hashimoto et al., 2004; Krasheninnikov et al., 2009; 
Zhang et al., 2009; Lui et al., 2011). Raman spectroscopy is 

often used because of easy sample preparation. D peak could 
represent defective level of graphene and intensity ratio of 
2D to G exhibits number of graphene layers (Ferrari et al., 
2006; Yan et al., 2011). However, such properties can be 
assured in only indirect way from Raman spectroscopy. To 
get further information on the local structure, high resolution 
transmission electron microscopy (TEM) is a great analysis 
tool since it provides real space images and crystallographic 
information simultaneously (Cockayne et al., 2011). Ryu et 
al. (2012) successfully imaged the atomic structure of tilted 
bilayer graphene by controlling defocus and Cs correction 
value. Meanwhile, dark field TEM (DF-TEM) imaging is 
another technique to detect the local structure over large 
area rapidly. For polycrystalline graphene, hexagonal spots 
of graphene in selected area diffraction pattern (SADP) are 
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Dark field (DF) transmission electron microscopy image has become a popular 
characterization method for two-dimensional material, graphene, since it can visualize 
grain structure and multilayer islands, and further provide structural information such 
as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present 
microstructure of graphene, particularly, using DF imaging. High-angle grain boundary 
formation wass observed in heat-treated chemical vapor deposition-grown graphene on 
the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by 
strain around multilayer islands. Upon the crystal orientation between layers the multilayer 
islands were categorized into the oriented one and the twisted one, and their local structure 
were compared. In addition information from each diffraction spot in selected area 
diffraction pattern was summarized.
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rotated according to in-plane orientation of grains. Thus 
selection of one of the grain (or diffraction spot in SADP), 
that is DF imaging, visualizes the graphene grain structure 
while bright-field (BF) image shows no distinctive feature. 
In this article, we explore the local structure of graphene, 
specifically grain size or shape, structural sequence and defects 
using the DF-TEM imaging technique in polycrystalline and 
multilayer graphene. 

MATERIALS AND METHODS

Preparation of Graphene Samples
Twenty-five micrometers thick Cu foils (99.8%, No. 13382; 
Alfa Aesar, UK) were inserted into a 5 cm quartz tube, which 
was loaded inside a horizontal furnace. The tube was pumped 
to 600 mTorr, then heated up to 1,000oC with 50 sccm Ar and 
20 sccm H2 mixture flow. It took around 50 minutes for both 
heating up and annealing. Subsequently, graphene growth 
was carried out for 30 minutes under the mixture flow of 30 
sccm CH4 and 20 sccm H2. In order to induce slow cooling 
and prevent the tube from cracking, the furnace lid was kept 
closed until the temperature reached 800oC. Then, the sample 
was rapidly cooled down by opening the lid of the furnace 
and blowing air. Polymethylmethacrylate (PMMA) is used 
to cover top of as-grown chemical vapor deposition (CVD)-
graphene on the Cu substrate by spin coating to support 
graphene after etching Cu the substrate. 

TEM Sample Preparation 
Cu substrate was etched by ammonium persulfate solution 
((NH4)2S2O8, 0.1 M) during the night. After etching, the 
floating PMMA/graphene film rinsed with deionized water 
and was scooped by Au Quantifoil grid (Quantifoil Micro 
Tools GmbH, Germany) for TEM analysis. For removing the 
PMMA, a grid is soaked into warm acetone (60oC) for 1 hour. 
Subsequently the sample was dried in air and baked at 100oC 
for 10 minutes to remove adsorbents on the graphene surface 
and prevent hydro carbon contamination during TEM work. 
TEM (Titan G1 80-300; FEI, USA) analysis is performed at 
an accelerating voltage of 80 kV to prevent damage on the 
graphene sample.

RESULTS AND DISCUSSION

Grain Structure
There has been great effort to scale up the graphene sheet size 
for a variety of applications. It has been reported that large 
and high quality single layer graphene can be fabricated by 
CVD on polycrystalline Cu foils (Li et al., 2009; Bae et al., 
2010; Cao et al., 2010). Since the large-scale sheet is not able 
to avoid polycrystalline with current technology (Li et al., 
2010; Liu & Yakobson, 2010; Yazyev & Louie, 2010) and the 

grain boundary, which is to be defective region, is known to 
degrade the electrical (Li et al., 2010; Yazyev & Louie, 2010) 
and mechanical properties (Grantab, 2010), controlling the 
grain size and the grain boundary properties is a critical 
issue to enhance the properties of graphene. However, 
limited thickness just with a few atomic layers prevents the 
conventional grain analysis method to be applied. 
Duong et al. (2012) developed simple protocol to probe the 
graphene grain boundaries using optical microscopy, which 
enables the observation of large-area graphene directly 
without transfer from the Cu foil. Kim et al. (2012) tried to 
image the grain structure using polarized optical microscopy, 
visualizing the nematic liquid-crystal structure which is spin-
coated on graphene and epitaxially interacted with it. Fei et al. 
(2013) utilized scanning plasmon interferometry that detects 
plasmon interference acquired at the grain boundary. With 
leading edge analysis technique of Cs-corrected STEM in 
high spatial resolution, atomic structure of the defective area 
between grains, that is grain boundary, has been analyzed to 
have pentagons, heptagons and distorted hexagons instead of 
typical honeycomb hexagonal atomic arrangement (Huang et 
al., 2011). In order to get the grain map, Huang et al. (2011) 
developed DF patch-quilt method, which is great to recognize 
small-scale (under μm size) grains thanks to better spatial 
resolution compare to any other imaging tools. Even though 
it is not time-efficient way to map large area since each grain 
image should be obtained separately and quilted in one image 
through digital imaging process, it is frequently used due to 
further structural information simultaneously taken during 
the analysis process. Huang et al. (2011) used the technique in 
order to optimize the synthesis process to increase the grain 
size and Lee et al. (2013) measured polycrystalline graphene 
based on the grain map. Lee et al. (2015 accepted) also 
confirmed the original as-grown sample has large scale grains 
before heat treatment. 
With the patch-quilt DF imaging method, here we compared 
the grain size and the shape in as-CVD graphene and 
annealed one (Fig. 1). The annealing was performed at 
400oC under vacuum condition after a transfer of graphene 
on the Si substrate. To distinguish the grains with different 
crystallographic orientations, DF images were taken by 
placing an objective lens aperture (area radius about 130 
nm of the sample) on the back focal plane to get selective 
diffracted beam from the diffraction spots. Second-order 
diffraction spots were selected to include one diffraction spot 
only as shown in inset diffraction pattern of Fig. 1. When 
you use first-order plane for DF imaging of polycrystalline 
graphene, it is hard to avoid to take closed placed spots 
together even in a smallest aperture. Graphene grain map is 
colored after collecting the same orientation grain images and 
subsequent gathering the grain image pieces. It was confirmed 
that high quality as-grown sample has large-scale polygonal 
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grains (Fig. 1A). Due to the large grain in as-grown sample, 
only two or three sets of diffraction patterns appear in SADP 
(inset), while annealed sample shows multiple spots (Fig. 1B) 
indicating it has smaller grains. In fact, the colored map shows 
that the grains are divided small pieces. Interestingly, grains 
grown with radial-shape are frequently observed as marked by 
dotted lines. The grain boundary angle is measured with the 
angle between the corresponding diffraction spots (Fig. 1C). 
The radial shaped grains are not just slightly (a few degree) 
rotated each other, but the rotation angle is large (mostly 
10o~30o), which was confirmed by repeat measurement in 
many regions. This high-angle grain boundary indicates that 
recrystallization occurred even in low temperature of 400oC. 
In most cases, multilayer islands are observed in the center of 
the radiant grains as shown in Fig. 1D. Thus it is expected that 
strain around multilayer during annealing is dominant factor 
to cause the recrystallization. In fact, Lee et al. (2015 accepted) 
presented that the estimated strain value generated during 
heat treatment on Si surface reach maximum at 400oC. The 
Other minor nucleation site can be defects such as trapped 
H2O and O2 or impurities induced during transfer process to 
Si wafer. 

Multilayer Graphene
It is known that graphene growth using CVD can produce 
multilayered-islands on the large area of single layer graphene. 
The multilayer graphene has been of scientific interest 
since they can be used to tune the physical properties of the 
graphene. The electronic, optical, and mechanical properties 
are dictated by the structure such as stacking order, defects, 
and interlayer spacing (Ohta et al., 2006; Lopes dos Santos 

et al., 2007; Avetisyan et al., 2010; Mele, 2010; Hicks et al., 
2011; Luican et al., 2011; Shallcross et al., 2011; Suaŕez Morell 
et al., 2011). For example, bandgap opens with external 
perpendicular electric field in case of AB-stacked (Bernal) 
bilayer and ABC-stacked (rhombohedral) trilayer graphene, 
while ABA-stacked trilayer has no bandgap under same 
electric field (Castro et al., 2007; Zhang et al., 2009; Lui et al., 
2011). In this regard, many researchers have put an effort to 
intentionally synthesize bi or multilayer graphene. Lee et al. 
(2010) synthesized a bi-layered Bernal graphene in wafer scale 
by controlling cooling rate in CVD process. Yan et al. (2011) 
reported that bilayer Bernal graphene can be synthesized by 
using two Cu substrates in a single CVD tube furnace. Shi et 
al. (2014 accepted) demonstrated that multi-layered graphene 
(up to 6 layers) can be produced by introducing a quasi-
closed space to induce slow gas flow. 
In order to examine qualities (like, homogeneity and 
continuity) of these multi-layered graphene, diverse 
characterization tools has been introduced. Raman 
spectroscopy has been used to indirectly identify a number 
of layers of graphene by intensity ratio between 2D to G peak 
and symmetry of 2D peak (Ferrari et al., 2006; Bhaviripudi 
et al., 2010; Lee et al., 2010; Yan et al., 2011). Atomic force 
microscopy has been used to directly visualize the multilayer 
graphene, though the instrumental offset error is necessary to 
be calibrated for better accuracy. Since graphite and graphene 
are both effective quencher reducing fluorescence intensity, 
fluorescence quenching microscopy (FQM) also can be used 
to image the graphene structure (Kim et al., 2009). Benefits of 
FQM are high-throughput and high-contrast imaging can be 
obtained on arbitrary substrate and even in solution (Kim et 
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Fig. 1. Graphene grain maps, color-coded by crystal orientation, and corresponding selected area diffraction patterns (inset) for as-grown graphene (A) 
and annealed one at 400°C (B). Regions with radiant grains are marked with dotted white line. (C) Rotation angles between neighboring radiant grains are 
measured, indicating they have high-angle grain boundary. (D) Center area of radiant grains, where multilayer locates. 
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al., 2010). 
Except above-mentioned methods, an optical microscopy 
offers an incomparably easier and better way to identify multi-
layered islands existing on the graphene. Even the thicknesses 
can be determined with high accuracy (Ni et al., 2007), when 
the graphene is prepared on top of Si wafers with a certain 
thickness of SiO2 and light wavelength (Abergel et al., 2007; 
Blakea et al., 2007). Fig. 2 shows a typical optical microscope 
image of graphene suspended on top of perforated Si wafer 
piece. The multi-layered graphene islands can be easily 
recognized by sharp contrast differences. As can be seen in 
Fig. 2, bi or trilayer islands are randomly distributed. The 
white lines are folded graphene, which might be caused by 
grain boundary of the Cu substrate.
The analysis tools mentioned above provide us the location of 
multilayer islands or number of layers, but no more structural 

information. Further analysis for such as stacking sequence 
and defects as well as the number of layers or the density 
of islands requires DF-TEM technique (Brown et al., 2012; 
Alden et al., 2013). While no distinguished feature except 
carbon support film of grid appears in the BF image (Fig. 
3A) due to weak signal from a mono or a few atomic layer 
of graphene, the DF image brightens area with specifically 
selected diffraction plane (Fig. 3B). It visualizes where the 
grain boundary is and how many layers the multilayer island 
has. It is trilayer and locates on the grain boundary covering 
two neighboring grains. 
It has been proved that the multilayer can grow having 
stacking order with lower layer (called oriented layer), which 
is preferential energetically, but not in all cases. Brown et al. 
(2012) evaluated the statistical fraction of oriented bilayer area 
(70%) in a graphene sheet grown by CVD method. The other 
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Fig. 2. Optical microscope image of graphene suspended on top of 
perforated Si wafer piece. Folded line and multilayer islands are visible.
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Fig. 4. Dark field image showing oriented trilayer (TL, lower left) in ‘grain 
1’ and twisted bilayer (BL, upper right) in ‘grain 2’. ML, monolayer.
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30% had twisted hexagonal symmetry between upper and 
lower layer. In the article below, stacking sequence and defects 
in oriented or twisted multilayer graphene are reviewed.

Oriented Multilayer Graphene
In many cases, oriented multilayer islands has faceted 

polygonal edges (mostly distorted hexagonal shape) like the 
lower left one in Fig. 4 and the third layer having similar shape 
with the second one locates in the center of the second layer 
while the non-oriented one are irregular in shape and location 
(see upper right multilayer island in Fig. 4).
For the oriented multilayer, the DF imaging can identify the 

Fig. 5. Oriented tetralayer island. (A) Selected area diffraction pattern (SADP) of typical hexagonal symmetry without any extra spots; corresponding 
dark field images obtained from the first-order (B-D), the second-order (E-G) and the third-order (H-J) diffraction spots in SADP. (K-M) Schematics of 
highlighted layers in dark field images depending on selected diffraction spots. Diffraction spot highlighting odd layers like are marked by green circle (L), 
even layers like are red (M) and all layers like are blue (K) in (A).
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number of graphene layers and stacking sequence (Ping & 
Fuhrer, 2012) . Here we applied the analysis method for a 
tetralayer in Fig. 5. Each diffraction spot provides different 
DF images. One of the first-order diffraction spot, indexed 
as (0110), visualizes the 1st and 3rd (odd-numbered) layer, 
while the next one 60o rotated highlights 2nd and 4th (even-
numbered) layer. Further 60o rotated spot (1100) shows 
the 1st and 3rd again, which indicates that each layer has 
3-fold symmetry. Schematics in Fig. 5I and M represent 
the highlighted layers in Fig. 5C, E, and D, respectively. The 
second-order spots with higher intensities in SADP provide 
enough contrast to all layers, which is sufficient to identify 
layer number. The contrast increase from monolayer to 
tetralayer region is linear. Here, it can be noticed that second-
order diffraction is useful to visualize multiple layers clearly 
as well as grain mapping. The third-order spot (0220) aligned 
with (0110) which makes odd-numbered layers visible let 
even-numbered layers brighter. The next third-order spot 
((2020)) activates odd-numbered layers, while spot rotated 
60o more ((2200)) enables even-numbered layers visible again, 
which shows the third-order spots reflect the 3-fold symmetry 
like the first-order ones do. 
Crystalline graphite is a strongly anisotropic layered solid 
consisting of a periodic stacking of graphene layers. One of 
the stacking sequences is Bernal-stacking, which has one 
corner of the hexagons of the second sheet located above 
the center of the hexagons of the lower sheet. This is known 
to be well-stacked arrangement and be the lowest energy. 
In a Bernal-stacked trilayer (ABA), the third would have the 
same relationship to the middle layer and its atoms would 
appear at the position coincident with the carbons in the 

lower sheet looking directly down on the stack. There is also 
other arrangement, a rhombohedral-stacked (ABC) trilayer, 
in which the upper sheet is shifted by the distance of an 
atom, so that the upper sheet is related to the lower sheet in 
the Bernal arrangement. Ping & Fuhrer (2012) proposed to 
distinguish the ABC stack from ABA with the lower intensity 
in the first-order DF image, since the contrast intensity grows 
monotonically with layer number for the Bernal-stacked 
region, but is low and non-monotonic for rhombohedrally 
stacked region. The tetralayer in Fig. 5 is identified as Bernal 
stacked (ABAB) layer. We used I1/I2 ratio method, which is 
explained in detail in refs (Ping & Fuhrer, 2012). The ratio 
of the first-order diffraction spot over the second-order one 
is 0.32 for Fig. 5A, which matches close to the theoretical 
value of 0.28 for the layer number of 4. The corresponding 
structure model is 2, 2, which means there are two layers of 
A stack position and two layers of B, that is Bernal stacking. 
Additionally, it can be double checked by tilting the sample 
and measuring the intensity change of diffraction spots in 
SADP (Brown et al., 2012; supporting information).
It is noticeable a few long triangle dark regions in the lower 
part of trilayer and tetralayer in Fig. 5B (marked by an arrow) 
and the second-order DF images (Fig. 5E-G) show dark lines. 
According to Ping & Fuhrer’s report (2012), the dark region 
is expected to have different stacking order, rhombohedral 
stacking (ABCA) in this case. Different stacking order domain 
here is not expected to be intrinsic defect, rather formed by 
mechanical stress due to bending event at the edge of carbon 
film of grid since boundary lines are observed only around 
the edge of the carbon film edge (Fig. 5E-G). Brown et al. 
(2012) also observed two distinguished parallel contrast 
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Fig. 6. (A) Selected area diffraction pattern obtained from bilayer region. The dotted square is magnified in inset. The rotation angle between S1 and S2 is 
29.7º. Dark field images are taken from the first-order diffraction spots (marked as blue) (B-D) the second-order diffraction spots (marked as red) (E-G). 
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in a layer and confirmed it as a twin defect with a different 
stacking configuration (AC) by performing a tilt-dependent 
SADP analysis. 
This systematic approach to DF images provides a simple 
tip which spot you need to use upon the interest. The 
number of layers can be easily identified when the second-
order diffraction spot is selected. The boundary of stacking 
sequence domain or line defect also can be recognized. The 
first- or third-order spots visualize A and B layers by turns 
and area with different stacking order is distinguished with 
different contrast intensity. 

Twisted Multilayer Graphene
Now we show a typical twisted multilayer graphene in Fig. 
6. SADP obtained from bilayer region shows two different 
hexagonal sets (Fig. 6A). The dotted square is magnified in 
inset, Diffraction spot S1 comes from monolayer, while S2 with 
less diffraction signal is supposed to come from the second 
layer. The twisted angle between layers can be measured from 
the relative rotation angle between neighboring diffraction 
spots.
The second layer is rotated 29.7o from the first one, which 
locate the first-order diffraction spot very close to the half-
distance position of (2110) by coincidence. The small stacking 
defect such as a rotation is known to have a profound 
effect on the electronic structure according to theoretical 
calculations (Lopes dos Santos et al., 2007; Mele, 2010). The 
properties deviates from the one of Bernal stacked bilayer that 
opens bandgap. In general, the twisted multilayer shows more 
defective features than oriented one. DF images taken from 
the first-order diffraction spots (Fig. 5B-D) show the second 
layer is divided into several domains which is supposed to 
have different orientation and their domain boundaries are 
visible in second-order DF images (Fig. 5E-G). 
Strain contour were observed all over the bilayer region, 
showing that the second layer is strained due to mismatch 
with the first layer and divided domains in the second layer. 
When the rotation angle is small enough, producing close 
diffraction spots in SADP, for the aperture to take them both 
for the DF imaging, Moiré fringes are observed. More Moiré 
pattern images experimentally observed can be found in 
Brown et al. (2012), even in atomic resolution scale (Robertson 
et al., 2011; Ryu et al., 2012). The strain on the layer was 
analyzed with Moiré fringes, curve pattern implies that pre-

strain and shear-strain elements are both present (Brown et 
al., 2012). 

CONCLUSIONS

In this paper, we demonstrated DF-TEM technique to 
visualize and investigate the structure of graphene; 1) 
the grain size and shape, 2) number of multilayer, crystal 
orientation between layers, stacking sequence and defects in 
multilayer graphene. 
The grain structure of CVD-grown graphene was explored 
using the patch-quilt DF imaging method. As a result, it was 
found that annealing transferred graphene on the Si wafer 
after initial growth causes recrystallization. Radiant grains 
have high-angle grain boundary the nucleation is expected to 
occur by strain around multilayer islands. 
Upon the interest, different diffraction spots should be 
selected for DF imaging. The second-order diffraction spot 
brightens all layers with enough contrast, which let us identify 
the number of layers. It also shows domain boundaries, of 
course different lines depending on selected crystal plane. 
Diffraction spots on the first or third-order plane highlight 
odd or even layers by 60o turns. In addition, domains having 
different stacking sequence are distinguished due to different 
contrast in DF image.
The multilayer islands are categorized into oriented one 
and twisted one depending on the crystal orientation 
between layers. When the number of layer is >3, it is easily 
distinguished with shape and relative position of upper layer 
to lower one. Twisted bilayer can be identified by extra set of 
hexagonal shape diffraction spots in SADP. 
Compared to other imaging techniques, big advantage of DF 
imaging combined with SADP is to provide crystal structural 
information in a relatively high resolution. This is not limited 
to only graphene, but also can be applied widely to all two-
dimensional materials such as hexagonal boron nitride 
and semiconducting transition metal dichalcogenides MX2 
(M=Mo, W; X=S, Se) (Kim et al., 2013; van der Zande et al., 
2013). 
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