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INTRODUCTION

Mankind has been continuously learning from nature via 
careful observation in attempt to improve their own lives and 
to further overcome the environmental issues. In the last 10 
years, researchers have focused their attention on the surface 
functions of parts of living organisms, such as gecko’s feet, 
water strider’s legs, and lotus leaves for various applications 
(e.g., self-cleaning surfaces, nano-micro robotics, and water 
harvesting) (Bhushan & Her, 2010; Cheng et al., 2005; Cho 
& Choi, 2008; Gao & Jiang, 2004; Hansen & Autumn, 2005; 
Neinhuis & Barthlott, 1997). In particular, functional plant 
surfaces such as lotus or acacia leaves have been studied owing 
to their excellent characteristics of superhydrophobicity and 
self-cleaning, which are a result of their structures and surface 
materials (Cha et al., 2010; Cheng et al., 2005; Neinhuis & 
Barthlott, 1997). For characterizing superhydrophobicity, 
one can use simple water droplet measurements on target 
surfaces or measure the squeezing pressure at the micro-scale. 

Measurement of water condensation with water vapors is also 
a key indicator of robust superhydrophobicity at the nano-
scale (Ko et al., 2012, 2015; Quéré, 2008; Shin et al., 2012; 
Varanasi et al., 2009). 
When a water droplet is placed on a superhydrophobic plant 
leaf possessing nano- or micro-scale roughness like hair or 
bump-shapes (Fig. 1A), the droplet forms a nearly perfect 
spherical shape, rolls off, and cleans the leaf surface as shown 
in Fig. 1B. This self-cleaning and water-repellent behavior is 
typically attributed to the roughness of the surface and low-
surface-energy coatings such as the hydrophobic epicuticular 
wax crystalloid coating of lotus leaves. Superhydrophobicity 
has been commonly characterized by higher water contact 
angles (i.e., higher than 160o) and wetting angle hysteresis of 
drop rolling. However, because this method uses relatively 
large water droplets with millimeter-scale sizes, additional 
information on the quality of superhydrophobicity has been 
recently obtained. A robust superhydrophobic surface should 
be able to sustain high contact angles against condensation 
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of small-sized droplets such as vaporized water. Lotus leaves 
exhibit low resistance to water condensation owing to the 
low aspect ratio (defined as the ratio of the height to the 
width of the structures, ca. 2 or 3) of the nanopillar structure 
geometries for nanopillar structures (Cha et al., 2010; Cheng 
et al., 2005; Rahmawan et al., 2010). The water condensation 
behavior of particular functional organic surfaces has been 
measured using environmental scanning electron microscopy 
(ESEM). ESEM has attracted considerable attention as a 
promising method for studying the interactions between 
materials and humidity (i.e., humid air and water at the nano- 
or molecular-scale) in various disciplines such as biology, 
food and life science, and materials science (Cheng et al., 
2005; Donald, 2003; Esmaily et al., 2015; Jansson et al., 2016; 
Ko et al., 2015; Varanasi et al., 2009).
In this study, we propose a method to characterize superhy
drophobic plant leaves with an extremely high aspect ratio 
using a water droplet release method and ESEM condensation 
experiments. We have used Pelargonium tomentosum (also 
known as peppermint-scented geranium) having a superhy
drophobic surface, which contained nano-sized hair-like 
structures with an aspect ratio of more than 25 (Fig. 1A-
D). The surfaces of plants are known to have the trichome 

structures, which protect the plant from water and insects 
(Brewer & Smith, 1997; Gorb & Gorb, 2002).

MATERIALS AND METHODS

P. tomentosum leaves were obtained from a regional botanic 
garden. The morphologies of the leaf surfaces at different 
scales were observed using a digital camera (60D; Canon, 
Japan) and with a scanning electron microscope (Nova 
NanoSEM 200; FEI, USA). Prior to scanning electron 
microscopy (SEM) observations, the sample surfaces were 
coated with platinum thin films of ca. 10 nm for protecting 
the plant surface from electron charging; the surfaces were 
then observed via SEM at a power of 10 kV.
The wettability was observed for millimeter-scale water 
droplets using the sessile drop technique; 20 µL of deionized 
water was gently deposited on the P. tomentosum leaf using 
a micro-syringe. The wettability of the micro-meter scale 
water droplets, which replicate mist or fog-scale droplet was 
evaluated in a custom-made humidity-controlled chamber. 
Water mist was supplied to the P. tomentosum leaf for 2 hours, 
sequential images were taken by a digital camera (60D). 
The sub-micro scale water droplet condensation behavior was 
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Fig. 1. (A) Pelargonium tomentosum leaf and (B) sessile water droplet on the P. tomentosum leaf. (C-E) Scanning electron microscopy images of the leaf 
surface. (C) Low-magnification picture of the surface, (D, E) morphology of trichome or hair on the P. tomentosum leaf.
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observed via ESEM (XL-30 FEG; FEI) at a power of 15 kV. A 
piece of the P. tomentosum leaf was placed on a Peltier cooling 
stage module, and the edge of the leaf was subsequently 
covered with silver paste to increase its thermal conductivity. 
The temperature was controlled at 2oC and chamber pressure 
was increased from 3.0 to 5.6 Torr. Images were taken with 
respect to the pressure-holding duration for 5 minutes during 
observation.

RESULTS AND DISCUSSION

Both sides of the whole leaf surface were covered with hair 
or trichome, as shown in Fig. 1A. The surface of the hairy 
leaf was observed using an electron microscope for detailed 
morphology observation. The hair or trichome contained 
ca. 50 µm of the main body and 1 µm of the bumped 
structure, as shown in Fig. 1D and E. According to a previous 
study, the leaf surface requires a hierarchical structure (i.e., 
nanostructures on microstructures) and hydrophobic wax 
components to achieve superhydrophobicity (Koch & 
Barthlott, 2009). Millimeter-scale water droplets were hardly 
deposited as a result of the low adhesion between the water 
droplet and the hairy structure. Thus, the water droplets 
maintained their spherical shape, and the contact angle was 
160o (i.e., superhydrophobicity was achieved).
The wettability during condensation was determined using 
a micro-meter scale mist (Fig. 2). Droplets of micro-meter 

scale mist were deposited on a P. tomentosum leaf; with time, 
the size of these droplets started to grow. After 2 hours of mist 
deposition, the deposited mist droplets maintained a spherical 
shape (Fig. 2E), which indicated that the P. tomentosum leaf 
was hardly wet by micro-meter scale mist because of the 
hydrophobic nature of trichome (Brewer & Smith, 1997). 
The condensation behavior of the sub-micro scale water 
droplets generated by molecular-size water vapor on P. tomen
tosum leaves was investigated (Fig. 3). We used ESEM (Fig. 
3A) in combination with a Peltier cooling stage (Fig. 3B) to 
control the temperature and pressure inducing water droplet 
condensation under supersaturation in an environmentally 
controlled chamber. By maintaining the temperature of at 2oC 
(corresponding to a water vapor pressure of 5.3 Torr) using 
the Peltier cooling stage, the chamber pressure was increased 
from 3 to 5.6 Torr, to initiate water condensation. As shown 
in Fig. 3C, trichome on the P. tomentosum leaf remained 
dry, without any water droplets at chamber pressures lower 
than 5.6 Torr. However, once the chamber pressure reached 
5.6 Torr, water droplets 4.5~5.5 µm in diameter appeared 
at a relatively small contact angle (ca. 40o) and remained 
attached to the surface of trichome. Thus, the micro-scale 
condensed water droplets attached to trichome and wet 
the P. tomentosum leaf despite the formation of relatively 
large scale water drop such as rain or mist hardly wet the P. 
tomentosum leaf). Finally, water flooding occurred, and nearly 
the entire surface of the leaf as well as trichome was covered 
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E Fig. 2.  (A) Custom-made humidity-
controlled chamber for the mist experi
ments. (B-E) Sequential photos of mist 
deposition on Pelargonium tomentosum 
leaves at : (B) 20, (C) 60, and (D, E) 
120 minutes after the humidifier was 
connected. 
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by condensed water with the passage (Fig. 3H). 

CONCLUSIONS

We observed the morphology and water wettability charac
teristics of P. tomentosum leaves and found that the entire 
surfaces of the leaves were covered with trichome, which 
comprised a hierarchical structure of the body and bumps. 
This hydrophobic trichome was responsible for the 
superhydrophobicity of P. tomentosum leaves for millimeter 
and micro-meter water droplets such as rain drops and 
mist, respectively. However, ESEM observation of water 
condensation from molecular-size water vapor revealed that 
nucleation started on trichome, to which condensed water 
droplets 4.5~5.5 µm in diameter were attached. Finally, the 

entire surface, including trichome, was covered by condensed 
water when the flooding stage was reached. 
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Fig. 3. (A) Environmental scanning elec
tron microscopy (ESEM) equipment and 
(B) Peltier cooling stage for water con
densation experiments. (C) Scanning 
electron microscopy image of a trichome 
on the Pelargonium tomentosum leaf in 
the ESEM chamber. (D-H) Sequential 
ESEM micrographs under supersatura
tion according to the pressure holding-
duration.
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