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INTRODUCTION

Transition metal dichalcogenides (TMDCs) are layered 
materials with strong in-plane covalent bonding and weak 
out-of-plane van der Waals bonding which is similar with 
graphene (Novoselov et al., 2005; Ramakrishna Matte et 
al., 2010). In particular, semiconducting two-dimensional 
(2D) TMDCs (MX2: M=Mo, W and etc., X=S, Se, Te), 
exfoliated from bulk TMDCs, exhibit not only good 
chemical stability and flexibility but also unique electronic 
and optical properties, including indirect-to-direct band 
gap transition depending on layer number, high carrier 
mobility (approximately 100 cm2/Vs) and strong spin-orbit 
coupling due to their broken inversion symmetry (Mak 
et al., 2010; Radisavljevic et al., 2011; Wang et al., 2012; 
Chhowalla et al., 2013; Song et al., 2013). These peculiar 

properties of 2D TMDCs make it promising to be used in 
field-effect transistors (Radisavljevic et al., 2011; Baugher et 
al., 2013; Georgiou et al., 2013; Lee et al., 2013), sensors (He 
et al., 2012; Li et al., 2012; Late et al., 2013; Liu et al., 2014a), 
photodetectors (Zhang et al., 2012; Lopez-Sanchez et al., 2013; 
Song et al., 2015), piezoelectric (Wu et al., 2014), and solar cell 
(Bernardi et al., 2013; Cheng et al., 2014; Furchi et al., 2014; 
Lee et al., 2014a) for future applications in such as wearable 
and flexible electronic devices which require compact, light-
weight and high electrical and optical performance (Wang et 
al., 2012; Song et al., 2015).
One of the most important research field in 2D TMDCs is the 
reliable synthesis of 2D TMDCs with large area uniformity 
and layer number controllability. To date, the mechanical 
and chemical exfoliation methods have been employed to 
produce 2D TMDCs (Coleman et al., 2011; Eda et al., 2011; 
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Radisavljevic et al., 2011; Li et al., 2012; Nicolosi et al., 2013). 
The exfoliated 2D TMDCs are suitable for basic research 
and demonstration of concept application since they have 
high crystallinity and inherent properties. However, the 
exfoliated 2D TMDCs have shown several limitations such 
as isolation, small size (usually less than a few μm), and low 
productivity, which make it difficult to be used 2D TMDCs in 
practical devices. Thus, significant efforts have been devoted 
to synthesize high quality and large area 2D TMDCs. Recently 
several studies have shown synthesis of 2D TMDCs using 
various methods based on the vapor deposition techniques: 
sulfurization of metal and metal oxide thin films (Lin et al., 
2012; Zhan et al., 2012; Elías et al., 2013; Liu et al., 2014b), 
chemical vapor deposition (CVD) (Lee et al., 2012; Huang et 
al., 2013; Najmaei et al., 2013; van der Zande et al., 2013; Cong 
et al., 2014; Ji et al., 2014; Ling et al., 2014; Shaw et al., 2014; 
Dumcenco et al., 2015; Kang et al., 2015) and atomic layer 

deposition (ALD) (Song et al., 2013; Jin et al., 2014; Tan et al., 
2014; Song et al., 2015). In this review, synthetic methods for 
2D TMDCs, mainly focused on the MoS2 and WS2 which are 
the most studied 2D TMDCs, will be presented.

CHALCOGENIZATION OF METAL AND METAL 
OXIDE THIN FILM

Initial studies on the synthesis of 2D MoS2 were focused 
on the sulfurization of Mo and MoOx thin films, which 
were deposited by physical vapor deposition (PVD) at high 
temperature. Zhan et al. (2012) reported that the synthesis 
of MoS2 film by thermal annealing (at 750oC) of PVD Mo 
thin film on SiO2/Si substrate in sulfur vapor as shown 
in Fig. 1A-D. Similarly, Lin et al. (2012) reported wafer-
scale (2 inch) MoS2 thin layers synthesis by sulfurization 
of MoO3 thin film at 1,000oC (Fig. 1E-G). Although these 
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Fig. 1. (A) Schematic illustration of Mo 
sulfurization. (B) Diffraction pattern 
taken from MoS2. (C) Dark field trans
mission electron microscopy (TEM) 
image of MoS2. (D) Cross-sectional 
high-resolution TEM (HRTEM) image 
of MoS2. (E) Synthesis procedure of 
MoO3 sulfurization. (F) MoS2 on a 2 
inch sapphire wafer. (G) Cross-sectional 
HRTEM image of MoS2. (H) Synthesis 
procedure for the atomic layer deposition 
(ALD) WO3 sulfurization. (I) Large-area 
(approximately 13 cm) mono-, bi-, and 
tetralayer WS2 on SiO2 substrates. (J) A 
HRTEM image of a monolayer WS2, and 
the diffraction pattern of WS2 (inset). 
(K) Cross-sectional HRTEM image of 
tetralayer WS2. (L) Field effect transistor 
structure based on WS2. Fig. 1A-D repro
duced from the article of Zhan et al. 
(2012) (Small 8, 966-971) with original 
copyright holder’s permission. Fig. 1E-G 
reproduced from the article of Lin et al. 
(2012) (Nanoscale 4, 6637-6641) with 
original copyright holder’s permission. 
Fig. 1H-L reproduced from the article of 
Song et al. (2013) (ACS Nano 7, 11333-
11340) with original copyright holder’s 
permission.



Synthesis of 2D TMDCs

121

sulfurization methods are simple and easy to produce 2D 
MoS2, several limitations exist such as difficulty in precise 
thickness control and in wafer-scale thickness uniformity of 
PVD Mo and MoOx. Thus, precise control on the thickness 
of metal oxide film is essential to obtain layer number 
controlled, wafer-scale uniform 2D TMDCs. Recently, Song 
et al. (2013) demonstrated the synthesis of high quality WS2 

by the sulfurization of WO3 thin film deposited by ALD. 
Since ALD has inherently excellent ability to control the film 
thickness over wafer scale, the synthesized WS2 layer has 
retains the inherent benefits of the ALD process as well as high 
mobility of approximately 4 cm2/Vs (Fig. 1H-L). Further, latest 

report by Song et al. (2015) has shown that the composition 
controllable synthesis of Mo1-xWxS2 alloy using sulfurization of 
super-cycle ALD Mo1-xWxOy. Based on this, they synthesized 
a vertically composition-controlled Mo1-xWxS2 multilayer that 
has broadband light absorption. Since the various transition 
metal oxides can be easily deposited by ALD, sulfurization 
(or selenization) of ALD metal oxide could be extended to 
synthesis of various 2D TMDCs.

CHEMICAL VAPOR DEPOSITION

The synthesis of 2D TMDCs using CVD with metal oxide 
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Fig. 2. (A) Schematic illustration of chemical vapor deposition (CVD) MoS2. (B) The optical microscopy (OM) images of CVD MoS2 on the SiO2 substrate 
treated with reduce graphene oxide solution. (C) OM image of CVD MoS2 on a SiO2 substrate, and OM image of a monolayer CVD MoS2 triangle with size 
up to 120 μm in lateral (inset). (D) High-resolution transmission electron microscopy image of the grain boundary of CVD MoS2 with shown a periodic line 
of 8-4-4 ring defects. (E) An atomistic model of the experimental structure shown in Fig. 2D. (F) Large-area (1×7 cm2) mono-, bi-, and tetralayered CVD 
WS2 on SiO2 substrates. (G) Schematic illustration of metal-organic CVD MoS2 and WS2. (H) Batch-fabricated 8×100 MoS2 field effect transistor arrays on a 
4-inch SiO2 wafer. Top inset: enlarged image of one square containing 100 devices. Middle and bottom insets: corresponding color maps of σ□ at gate bias 
VBG=50 V and –50 V, respectively. Fig. 2A and B reproduced from the article of Lee et al. (2012) (Advanced Materials 24, 2320-2325) with original copyright 
holder’s permission. Fig. 2C-E reproduced from the article of van der Zande et al. (2013) (Nature Materials 12, 554-561) with original copyright holder’s 
permission. Fig. 2F reproduced from the article of Park et al. (2015) (Nanoscale 7, 1308-1313) with original copyright holder’s permission. Fig. 2G and H 
reproduced from the article of Kang et al. (2015) (Nature 520, 656-660) with original copyright holder’s permission.
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(MO3, M=Mo and W) and chalcogen (X=S and Se) powders 
at 600oC~700oC has been extensively studied (Lee et al., 
2012; Najmaei et al., 2013; van der Zande et al., 2013; Ling 
et al., 2014). In this process scheme, MO3-x is formed by the 
reduction of MO3 vapor. Subsequently, MO3-x vapor diffuses 
to the substrate and reacts with X vapor. Lee et al. (2012) 
reported the promotion of 2D MoS2 synthesis using substrate 
treatment by graphene like species, such as reduced graphene 
oxide, perylene-3,4,9,10-tetracarboxylic acidtetrapotassium 
salt and perylene-3,4,9,10-tetracarboxylicdianhydride. Here, 
the species used for surface treatment promote act as seeds for 
2D MoS2 formation and enhance the lateral growth of MoS2, 
as shown in Fig. 2A and B (Lee et al., 2012). Meanwhile, van 
der Zande et al. (2013) reported the synthesis of large MoS2 
single crystal grains (at 700oC) up to 120 µm without seeding. 
In this report, they used ultraclean substrates and fresh 
precursors to promote grain size (Fig. 2C). Further, they have 
observed that formation of periodic line of 8-4-4 ring defects 

at grain boundary of CVD MoS2 as represented in Fig. 2D 
and E. Recent studies on the CVD with MO3 and X powder 
have been focused on the synthesis of MoS2 and WS2 on 
single crystal substrate for enhancing grain size. In particular, 
orientation aligned growth of CVD MoS2 on c-plane sapphire 
has been reported by Ji et al. (2014) and Dumcenco et al. 
(2015). They have shown that the same hexagonal lattice 
symmetry induces van der Waals epitaxy of MoS2 on c-plane 
sapphire, which suggests possibility of wafer-scale growth 
of single-crystal MoS2 similar with graphene on hydrogen-
terminated germanium (Lee et al., 2014b).
However, the CVD process based on MO3 and X powder is 
critically depending on process conditions such as amount 
of MO3 and X powder, non-homogeneous diffusion of 
vaporized molecules, and outgoing flow of vapors from the 
chamber. Since these process conditions cannot be easily 
controlled, uniform and high quality synthesis is hardly 
achievable (Najmaei et al., 2013; van der Zande et al., 2013; 
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Fig. 3. (A) Schematic illustration of one growth cycle of atomic layer deposition (ALD) MoS2. (B) High-resolution transmission electron microscopy (HRTEM) 
image of mono- and multilayer ALD MoS2. (C) Optical absorption. (D) Photoluminescence spectra for ALD-deposited, as-grown or annealed MoS2. (E) 
Cross-sectional HRTEM image of the ALD MoS2 after annealed at 900oC for 5 minutes. Fig. 3A-D reproduced from the article of Tan et al. (2014) (Nanoscale 
6, 10584-10588) with original copyright holder’s permission. Fig. 3E reproduced from the article of Jin et al. (2014) (Nanoscale 6, 14453-14458) with original 
copyright holder’s permission.
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Park et al., 2015). Thus, CVD of 2D TMDCs based on gas 
precursor and reactant is more promising. As shown in Fig. 
2F, Park et al. (2015) reported layer number controllable and 
wafer-scale uniform growth of WS2 using WCl6 and H2S at 
700oC. More recently, Kang et al. (2015) reported high quality 
WS2 synthesis based on metal-organic CVD (MOCVD) using 
Mo(CO)6, W(CO)6, and (C2H5)2S at 550oC (Fig. 2G). The 
synthesized MOCVD 2D TMDCs exhibited homogeneous 
electrical properties with high electron mobility of 30 cm2/
Vs and 99% devices yield (Fig. 2H). However, the growth rate 
was reported to be very low, which requires 26 hours to grow 
monolayer 2D TMDCs.

ATOMIC LAYER DEPOSITION

Due to benefits of ALD in terms of thickness controllability 
of thin film in nanometer scale, ALD is considered to be a 
promising candidate to synthesis technique for 2D TMDCs. In 
fact, various ALD processes of chalcogenides thin films such 
as ZnS, GaS, CdS, etc, have been reported for photovoltaic and 
energy storage materials (Dasgupta et al., 2015). Recently, a 
few reports on ALD MoS2 are available as shown in Fig. 3. Tan 
et al. (2014) reported growth of ALD MoS2 film using MoCl5 
and H2S at 300oC (Fig. 3A-D). In addition, low temperature 
(at 100oC) ALD MoS2 process using Mo(CO)6 and (CH3)2S2 is 

Table 1. Summary of the vapor deposition techniques for synthesis of two-dimensional TMDCs

TMDCs Process
Process temperature 

(ºC)
Layer number

Electrical properties 
(cm2V−1s−1)

Reference

Chalcogenization of metal and metal oxide thin film

   MoS2 Sulfurization (S powder) of PVD Mo  

   (1~5 nm)

750 Mono- and few-layer  

mixing

Back gate FET

Mobility: 0.004 to 0.04

Zhan et al. (2012)

Sulfurization (S powder) of PVD MoO3 1,000 Bi- and few-layer Back gate FET

Mobility: 0.8

Lin et al. (2012)

Sulfurization (H2S) of ALD MoO3 Annealing: 1st, 600;  

   2nd, 1,000

Mono-, bi-, and tri-layer - Song et al. (2015)

   WS2 Sulfurization (S powder) of PVD WO3 800 Mono-, bi-, and tri-layer - Elías et al. (2013)

Sulfurization (H2S) of ALD WO3 1,000 Mono-, bi-, and tetra-layer Top gate FET

Mobility: 3.9 

Song et al. (2013)

Chemical vapor deposition

   MoS2 MoO3 and S powder with seeding 650 Monolayer Back gate FET

Mobility: 0.02 

Lee et al. (2012);  

Ling et al. (2014)

MoO3 and S powder 700 Monolayer Back gate FET

Mobility: 3 to 4

van der Zande et al. 

(2013)

MoO3 nanoribbons and S powder 850 Monolayer Back gate FET

Mobility: 4.3

Najmaei et al. (2013)

MoO3 and S powder 850 Monolayer on sapphire Back gate FET

Mobility: 0.1 to 1 

Ji et al. (2014)

MoO3 and S powder 700 Monolayer on sapphire Back gate FET

Mobility: 25 

Dumcenco et al. 

(2015)

   WS2 WO3 and S powder 750 Monolayer - Cong et al. (2014)

WCl6 and H2S gas 700 Mono-, bi-, and tetra-layer - Park et al. (2015)

   MoS2, WS2 Mo(CO)6, W(CO)6, and diethyl sulfide 550 Monolayer Top gate FET

Mobility: 30 

Kang et al. (2015)

   MoSe2 MoO3 and Se powder 750 Mono- and few-layer - Shaw et al. (2014)

   WSe2 WO3 and Se powder 750 Monolayer Electric double-layer FET

Mobility: 90 

Huang et al. (2013)

Atomic layer deposition

   MoS2 Mo(CO)6 and dimethyl disulfide 100 Amorphous - Jin et al. (2014)

MoCl5 and H2S gas 300 Amorphous - Tan et al. (2014)

TMDCs, transition metal dichalcogenides; PVD, physical vapor deposition; FET, field effect transistor; ALD, atomic layer deposition.
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reported by Jin et al. (2014). However, the reported ALD MoS2 
films show low optical property attributed to amorphous 
phase as shown in Fig. 3E, which limits there use for the 
electrical and optical applications. The basic problem of ALD 
processes for TMDCs are the difficulty in the formation of 
layered structure. The deposition of high quality TMDCs by 
direct ALD process is yet to come. 

CONCLUSIONS

This review provides a brief collection of literatures on the 
synthesis of 2D TMDCs materials as summarized in Table 1. 
Vapor deposition techniques, which are suitable for wafer-
scale and high-quality synthesis of 2D TMDCs such as MoS2, 

WS2, WSe2 and MoSe2 for electronic and optoelectronic 
devices have been developed. To realize the advanced appli
cations using 2D TMDCs, more efforts are needed to resolve 
many issues related to the growth, including high reliability, 
layer number controllability, wafer-scale uniformity and 
high crystallinity. Furthermore, synthesis of high quality 2D 
TMDCs will boost the study on the stacking of different types 
of 2D materials which could exhibit novel properties and new 
phenomena.
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